Source-Target-Source Classification Using Stacked Denoising Autoencoders
نویسندگان
چکیده
Deep Transfer Learning (DTL) emerged as a new paradigm in machine learning in which a deep model is trained on a source task and the knowledge acquired is then totally or partially transferred to help in solving a target task. Even though DTL offers a greater flexibility in extracting high-level features and enabling feature transference from a source to a target task, the DTL solution might get stuck at local minima leading to performance degradation-negative transference-, similar to what happens in the classical machine learning approach. In this paper, we propose the Source-Target-Source (STS) methodology to reduce the impact of negative transference, by iteratively switching between source and target tasks in the training process. The results show the effectiveness of such approach.
منابع مشابه
Marginalized Stacked Denoising Autoencoders
Stacked Denoising Autoencoders (SDAs) [4] have been used successfully in many learning scenarios and application domains. In short, denoising autoencoders (DAs) train one-layer neural networks to reconstruct input data from partial random corruption. The denoisers are then stacked into deep learning architectures where the weights are fine-tuned with back-propagation. Alternatively, the outputs...
متن کاملDecoding Stacked Denoising Autoencoders
Data representation in a stacked denoising autoencoder is investigated. Decoding is a simple technique for translating a stacked denoising autoencoder into a composition of denoising autoencoders in the ground space. In the infinitesimal limit, a composition of denoising autoencoders is reduced to a continuous denoising autoencoder, which is rich in analytic properties and geometric interpretat...
متن کاملMultimodal Stacked Denoising Autoencoders
We propose a Multimodal Stacked Denoising Autoencoder for learning a joint model of data that consists of multiple modalities. The model is used to extract a joint representation that fuses modalities together. We have found that this representation is useful for classification tasks. Our model is made up of layers of denoising autoencoders which are trained locally to denoise corrupted version...
متن کاملStacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion
We explore an original strategy for building deep networks, based on stacking layers of denoising autoencoders which are trained locally to denoise corrupted versions of their inputs. The resulting algorithm is a straightforward variation on the stacking of ordinary autoencoders. It is however shown on a benchmark of classification problems to yield significantly lower classification error, thu...
متن کاملMid-level Features for Audio Chord Estimation using Stacked Denoising Autoencoders
Deep neural networks composed of several pre-trained layers have been successfully applied to various tasks related to audio processing. Stacked denoising autoencoders represent one type of such networks. They are discussed in this paper in application to audio feature extraction for audio chord estimation task. The features obtained from audio spectrogram with the help of autoencoders can be u...
متن کامل